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Abstract. We calculate the contribution from rescattering of K+K− pairs produced by photoproduction of
Λ(1520)K+ to the photoproduction of φ mesons. The photoproduction of φ mesons is presently a hot topic
due to the possibility that an intrinsic hidden strangeness contribution in the nucleon flavor wave function
may be revealed in this process, and due to the possibility that the structure of scalar mesons could be
accessible experimentally via S − P interference in the K+K− system. We show that rescattering makes
an important contribution to φ photoproduction which could – if neglected – mislead the interpretation of
the forthcoming high precision data.

1 Introduction

The non-relativistic quark model has met with consider-
able success, with more success than one might believe
such a naive model could have. The existence of hidden
strangeness in nucleons is thus an exciting possibility
which may indicate the limits of that model. Hidden
strangeness in the nucleon has been proposed recently on
the basis of various experimental findings. Deep inelastic
scattering reveals a significant s̄s contribution in the flavor
wave function of the nucleon [1–3] but at large momentum
transfers. The pion-nucleon sigma term ΣπN [4,5] derived
from low-energy πN scattering also seems to require an s̄s
component. However this interpretation is not undisputed
[6,7].
The production of φ mesons is an alternative way to

search for the strangeness content of the nucleon. φmesons
are dominantly s̄s and their production off protons may
reflect an intrinsic hidden strangeness. Experiments on φ
meson production in p̄p annihilation at rest into φ + X
or ω +X show a strong violation of the OZI rule [8–10].
Particularly interesting is the high selectivity of the break-
down of the OZI rule: φ production is largely enhanced in
some reactions but only slightly in others. However, con-
ventional explanations of these findings also exist [11]–[14].
In particular the large rate for p̄p → φπ can be calculated
from rescattering of the two kaons produced in p̄p → K∗K̄.
Note that the rates for these two reactions is similar in
magnitude.
Another possibility to investigate the role of hidden

strangeness in nucleons is offered by photoproduction of
φ mesons off nucleons in the reaction

γ + p → p+ φ; φ → K+K− (1)

The φ → K+K− is chosen because of its easy identifica-
tion in a magnetic spectrometer. Due to the experimental
possibilities offered by CEBAF and ELSA, this approach
has attracted considerable interest.
Data on photoproduction of φmesons are scarce so far.

At Bonn, total and differential cross sections for reaction
(1) were measured in the early ’70ties [15]. The experi-
ment used a spectrometer set and a fixed photon energy
of 2 GeV. Data were taken at 5 different values of the
momentum transfer. At higher energies (2.8 < Eγ < 4.8
GeV), low-statistics data are available from Daresbury [16]
and DESY [17]. At Bonn, the SAPHIR Collaboration has
collected more than 2000 φ mesons over a range of photon
energies from the φ production threshold to 2.6 GeV. Two
high-statistics experiments at CEBAF plan to investigate
this reaction [18,19].
This renewed interest stems from a couple of new ques-

tions which concern the production mechanisms (see
Fig. 1). The most prominent contribution to φ photopro-
duction comes from diffractive scattering which can be
visualized as scattering of the φ component of the pho-
ton (through vector meson dominance) off the nucleon via
Pomeron exchange. This can be seen from the dependence
of cross section on the momentum transfer t = t′ − t′min
which falls off exponentially. The slope parameter is α ∼-
4 GeV2; it depends weakly on energy. Other processes have
not yet been established; pure pion exchange would give
a stronger fall-off with t.
Figure 2 shows a recent calculation [24] for reaction (1)

and a photon energy of 2 GeV. The different contributions
are plotted and compared to the Bonn data [15]. Clearly,
there is need to extend the data to backward φ production
or large t.
The K+K− pair could also be produced with zero rel-

ative angular momentum. Indeed, experiments reported a
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Fig. 1. Upper panel: φ-meson photoproduction via Pomeron
exchange (left) and via pion exchange (right). Lower panel:
φ-meson photoproduction via knockout of the hypothetical s̄s
(left) and uud (right) component of the nucleon (from [24])
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Fig. 2. Differencial cross section for φ meson photoproduction
as a function of the scattering angle. The solid curve represent-
ing diffractive scattering describes the data very well. Devia-
tions can occur at backward angles due to pion exchange (- - -)
or due to knockout of the s̄s (– – –) or uud (- – -) component.
The data are from Bonn [15], the calculation from Titov et al.
[24]

S − P interference effect [16]. The S wave part is partic-
ularly exciting since the photoproduction amplitude for
production of scalar K+K− pairs may shed light on the
internal structure of the f0(980) and a0(980) which is im-
portant in the present glueball discussion [20]. The second
processes of the lower part of Fig. 1 are those of interest
in the present discussion: the photon may be absorbed by
the uud component and may give a kick into the forward
direction. The s̄s may then be left behind, a φ is produced
in backward direction.
In the next section we outline the derivation of the φ

meson production due to rescattering mechanism. In Sect.
3 the diffractive φ meson production within the vector-
meson-dominance model through the Pomeron exchange
is discussed. In Sect. 4 a brief review of the helicity am-
plitudes and spin observables are given. The Sect. 5 the
numerical results are presented.

Fig. 3. a φ-meson photoproduction via rescattering with
Λ(1520)K+ production in the intermediate state; b photopro-
duction of Λ(1520)
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Fig. 4. Cross section for Λ(1520) photoproduction. The data
above 2.7 GeV are from Daresbury, the low-energy data are
preliminary SAPHIR results. The threshold enhancement is
associated with an angular distribution characteristic of a P13

resonance (from [25])

2 φ meson photoproduction via rescattering
in dispersion technique

As mentioned, the search for an ss̄-component in the nu-
cleon and the hope for a better understanding of the na-
ture of the a0(980) and f0(980) provide strong support for
new experiments investigating φ-photoproduction. How-
ever, from φ production in p̄p annihilation we should have
learned a lesson: rescattering effects can be important and
its effects should be known in order to avoid a misinterpre-
tation of the data. The final state pK+K− can be reached
via φ photoproduction also via reaction

γ + p → Λ(1520) + K+; Λ(1520) → pK− (2)

where the Λ(1520) decays with a fraction of 22% into pK+

and the K+ then rescatters with the K− into a φ. The pro-
cess is shown in Fig. 3a. The cross section for the photopro-
duction of Λ(1520) is shown in Fig. 4. The low-energy part
has been determined at by the SAPHIR collaboration [25],
the results are still preliminary. The high energy data are
from Daresbury [21]. The cross section is of similar mag-
nitude as that for φ production. Hence kinematical ranges
can exist in which rescattering of the two kaons may form
a φ thus giving rise to a distortion of dσdt . This distortion
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must be known, at least its order of magnitude, to prevent
a misinterpretation of the data.
We calculate rescattering contributions to process (1)

as two–step process: in a first step, the system Λ(1520)K+

is produced and then, after the decay of the Λ(1520) →
pK−, the KK system forms a φ–meson. This process is
related to the three-meson dynamics in the intermediate
state:

γ + p → pK+K− → pφ . (3)

2.1 A model for Λ(1520) photoproduction:
exchange of K∗(890) meson Regge trajectories

In this model we assume that the Λ(1520) in γp → Λ(1520)
K+ is produced by the exchange of dominant meson Regge
trajectories in the t-channel. The dominant meson trajec-
tories are the K and K∗(890). It was shown that the K∗
gives the main contribution to the cross section at the en-
ergies Eγ > 5 GeV [23]. In our energy region Eγ ∼ 2 GeV
it is possible that not only t-channel exchanges but also
s-channel resonances contribute to the Λ(1520) photopro-
duction. Furthermore, at small t the contribution from
K-exchange increases. Unfortunately the lack of experi-
mental information about Λ(1520) photoproduction does
not allow to build a model which takes into account all
contributions mentioned above. Therefore we use a simple
model in our calculation where the K∗ trajectory gives
the main contribution into Λ(1520) photoproduction. In
this approach the unknown parameters of the model, the
form factors, can be defined using the experimental cross
section which effectively takes also into account the con-
tribution from other t-channel exchanges. Let us denote
the four-momenta of the incoming photon, outgoing kaon,
initial proton and final Λ as k, q, p and p′ respectively. The
invariant amplitude for Λ(1520) photoproduction (Fig. 3b)
then can be written as

TΛ = εγµMµT0 (4)

with
Mµ = Ψ̄ν(p′)QµαγK∗KQανR u(p) (5)

where εγµ is photon polarization vector, u(p) is the Dirac
spinor of the proton with momentum p and Ψν(p′) is spinor
of the Λ. The vertex operator for γK∗K, QµαγK∗K , is given
by

QµαγK∗K = εµαβδkβqδ (6)

where εµαβγ is the rank-4 antisymmetrical tensor. The ver-
tex operator for pK∗Λ, QανR , can be written as

QανR = gαν(p̂′ − p̂)− γα(p′
ν − pν) . (7)

This operator is orthogonal to the momentum ofK∗ which
allows to perform a summation over α in (4) (the term
proportional to (p′ − p)α in the K∗ propagator could be
omitted). The normalization parameter T0 includes the
vertex coupling constants, form factor and K∗ trajectory.
Let us note that T0 is complex and its phase is due to

Fig. 5. a Photoproduction of Λ(1520) and its decay into proton
and kaon; b position of the integration contour C(s′

12)

the phase factor in Regge trajectory 1 + Sexp(−iπα(t))
where S = −1 is the signature of the K∗ trajectory and
α(t) = 0.25 + 0.83t. The module of T0 which depends on
the invariant t = (p′ − p)2 and s = (k + p)2 is defined by
the cross section:

| T0 |2= 16π(s − m2
N )

2 dσ
dt

Tr
(8)

where Tr comes from the summation over final states and
average over initial states:

Tr =
1
4
gµµ′QµαγK∗KQµ

′α′
γK∗KTr

{
(p̂+m)QανR (p̂′ +mΛ)

×
(

−g⊥
νν′ +

1
3
γ⊥
ν γ

′⊥
ν

)
Qα

′ν′
R

}
(9)

where we take into account the completeness condition for
3/2-spin spinors (62).
To write down the process for photoproduction of a

Λ(1520) which decays into pK− one should use the de-
cay matrix element (64). Again taking into account the
completeness condition for 3/2-spin spinors (62) one finds
that the amplitude for the reaction of Fig. 5a is equal to:

AΛ = εγµT0Q
µα
γK∗KQανR

×
(
P̂ ′ +mΛ

) (
−g⊥

νβ +
1
3γ

⊥
ν γ

⊥
β

)
m2
Λ − P ′2 − imΛΓ

γ5kNµgΛNK (10)

where P ′ and kN are momenta of the Λ and nucleon, re-
spectively.

2.2 Rescattering with φ production in the final state

In this section it is shown how rescattering in the final
state can be calculated in the framework of the dispersion
relation technique. Let us consider the process of Fig. 3a
where the φ in the final state is produced via rescattering
with an Λ(1520) in the intermediate state. Let us denote
K+, K− and p as the first, the second and the third parti-
cles, respectively. The momenta of the K+ and the K− in
the intermediate state are p′

1 and p′
2, respectively, and the

momentum of the proton p3. We will consider the general
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case when all particles have different masses, m1, m2 and
m3.
Our aim is to write down the dispersion relation over

invariant mass of particles 1 and 2 in the intermediate
state. According to the general rules of the dispersion tech-
nique [34] we start from calculating the discontinuity of
the triangle diagrams in the channel of particles 1 and 2:

discT tr =
1
2

∫
dΦ(KK) AΛQφ→KK . (11)

AΛ defines the amplitude for Λ(1520) photoproduction,
Qφ→KK is the matrix element for φ decay into two kaons
given by (46) and the dΦ(KK) is the phase space element
given by (50). It is convenient to perform the phase space
integration in (11) in the c.m. frame of particles 1 and 2.
In this frame

s13 = m2
1 +m2

3 − 2p′
10p30 + 2z13p′

1p3; ,

p′
10 =

s′
12 +m2

1 − m2
2

2
√

s′
12

, p′
1 =

√
p′2
10 − m2

1, (12)

P30 =
s′
12 +m2

3 − s

2
√

s′
12

, p3 =
√

p2
30 − m2

3,

where z13 = cos θ13 and θ13 is the angle between the parti-
cles 1 in the intermediate state and 3 in the cms of particles
1 and 2, s = (p1+p2+p3)2, and s′

12 = (p
′
1+p′

2)
2. The ex-

pression for s23 is obtained from (12) by the replacement
1 ↔ 2. Equation (11) can be transformed to an integral
over the solid angle:

discT tr =
1
2

∫
dΩ1′2′

4π
AΛQφ→KK ρ12(s′

12) (13)

where

ρ12(s′
12) =

1
16πs′

12
(14)

×
√
[s′

12 − (m1 +m2)2][s′
12 − (m1 − m2)2] .

To perform an integration over the solid angle we define
the z-axis along the p3 vector. We also introduce the rel-
ative momentum of the particles 1 and 2, k′ = p′

1 − p′
2,

with:

k′
x = k′ sin θ13 cosφ, k′

y = k′ sin θ13 sinφ,

k′
z = k′ cos θ13 (15)

k′2 =
1
s′
12
[s′

12 − (m1 +m2)2][s′
12 − (m1 − m2)2] .(16)

φ is the azimuthal angle. As the next step we should de-
compose the vectors in (13) into an internal vector k′ and
external vectors p3, k and p. Due to the integration over
φ the terms proportional to kα, kαkβkγ , kαkβkγkµkν will
be equal to zero.
The integration over z has to be carried out along the

contour C(s′
12) shown in Fig. 5b. As shown in [35] the

integration contour C(s′
12) at small s

′
12,

(m1 +m2)2 ≤ s′
12 ≤ mis

mi +m3

+
m3

mi +m3
(m1 +m2 − mi)2 − mim3 ≡ si3(R), (17)

coincides with the phase space integration contour

−1 ≤ zi3 ≤ 1. (18)

shown in Fig. 5b by the solid line 1. At

si3(R) ≤ s′
12 ≤ (

√
s − m3)2 (19)

the contour C(s′
12) contains an additional part (Fig. 5b,

dashed line 2.) At s′
12 > (

√
s − M3)2 the integration is

performed in the complex si3-plane (line 3, Fig. 5b).
Finally, we find that the amplitude of the triangle dia-

gram including the Λ(1520) production in the intermedi-
ate state is given by the following dispersion integral:

T tr =
∫ Λcut

4M2
K

ds′
12

π

disc(T tr)
s′
12 − s12

. (20)

Here Λcut is a cutting parameter for the K+K− channel.
The introduction of a cut-off in the dispersion integral en-
sures its convergence and should be interpreted as a com-
pensation for our ignorance of the real K+K− amplitude
at high energies. It is important to note that the diagrams
which contain rescattering and include resonances in the
intermediate state have an anomalous singularity which
may appear near the physical region. These anomalous
singularities are related to the processes going at large
distances. At correct calculation of the rescattering pro-
cess (independently of the technique used, either Feynman
diagram or dispersion representation) these singularities
are correctly taken into account. In the dispersion tech-
nique the correct account for singularities is related to the
correct choice of the integration contour when discT tr is
calculated: the correct position of the integration contour
is shown in Fig. 5b (for details see [35]).

3 φ photoproduction
through Pomeron exchange

The photoproduction of the φ meson can be described
in the framework of the vector-meson dominance model
(VDM). In this model [26,27], the incoming photon first
converts into a φ meson and then scatters diffractively
from the nucleon through Pomeron exchange (see Fig. 1).
A microscopic model for vector-meson photo- and elec-

tro-production at high energy is based on the Pomeron–
photon analogy [36]. The Pomeron was described success-
fully in terms of a non-perturbative two-gluon exchange
model [28–33].
We will follow the [24] where the vector-meson dom-

inance model with Pomeron-photon analogy within the
hadron-Pomeron interaction picture is used, which is ex-
pected to be valid in the low energy region. In this ap-
proach, the incoming photon first converts into a quark
and antiquark pair, which then exchanges a Pomeron with
one of the quarks in the proton before it recombines into
an outgoing φ meson. The invariant amplitude of the
diffractive production can be written as

TVDM = iT0ε
∗φ
µ Mµνεγν , (21)
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with
Mµν = OαΓ

α,µν , (22)

where Oα describes the Pomeron-nucleon vertex and
Γα,µν is associated with the Pomeron–vector-meson cou-
pling which is related to the γ → qq̄ vertex Γν and the
qq̄ → φ vertex Vµ, as shown in Fig. 11. The dynamics of
the Pomeron-hadron interactions is contained in T0. The
Pomeron-nucleon vertex is given by

Oα = ū(p′)γαu(p). (23)

It is derived in [24] that in the case of φ meson photopro-
duction the Pomeron-vector-meson vertex can be written
as

Γ̃α,µν = (k + q)αgµν − 2kµgαν , (24)

The factor T0 in (21) can be defined from the dynamics of
the Pomeron-hadron interaction. We use the parametrisa-
tion of the differential cross section determined in [37]:

(
dσ

dt

)
VDM

= σb exp(−b|t − tmax|), (25)

with b = 4.01 GeV−2 and σ = 0.2 µb. Then normaliza-
tion factor T0 can be found from (8) where square of the
amplitude is given by

Tr =
1
4
gνν′

(
gµµ′ − qµq

′
µ

q2

)

×Tr
{
(p̂+m)Γ̃α,µνγα(p̂′ +m)Γ̃α

′,µ′ν′
γ′
α

}
.(26)

Let us stress that in our approach we consider the
pomeron as a phenomenological object for the descrip-
tion of a t-channel exchange by vacuum quantum num-
bers, that leads to the diffractive scattering. The param-
eter α′

P of this “low-energy pomeron” is close to zero,
for the diffractive cone slope of the elastic scattering it
is almost constant (the shrinkage of the diffractive cone
becomes noticeable at higher energies only). If there is no
shrinkage, the growth of the real part of the amplitude
with |t| is also suppressed and can be neglected.

4 Helicity amplitudes and spin observables

In this section a brief review on helicity amplitudes and
on the definition of the different polarization observables
is given. Details of this formalism can be found in [38–42].
To study spin observables, it is useful to use helicity

amplitudes in the c.m. frame:

Hλφ,λf ;λγ ,λi ≡ 〈q;λφ, λf |T |k;λγ , λi〉, (27)

where k and q are the momenta of the initial and final
system, respectively. λγ (= ±1), λφ (= 0,±1) and λi,f
(= ±1/2) are the helicities of the photon, φ meson and
target proton or recoil proton. In principle, there are 2×

2 × 3 × 2 = 24 complex amplitudes. However, due to the
parity invariance relation,

〈q;λφ, λf |T |k;λγ , λi〉 (28)

= (−1)Λf −Λi〈q;−λφ,−λf |T |k;−λγ ,−λi〉,
with Λf = λφ − λf and Λi = λγ − λi, only 12 complex
helicity amplitudes are independent. We label them as in
[41]:

H1,λφ
≡ 〈λφ, λf = + 1

2 |T |λγ = 1, λi = − 1
2 〉,

H2,λφ
≡ 〈λφ, λf = + 1

2 |T |λγ = 1, λi = + 1
2 〉,

H3,λφ
≡ 〈λφ, λf = − 1

2 |T |λγ = 1, λi = − 1
2 〉,

H4,λφ
≡ 〈λφ, λf = − 1

2 |T |λγ = 1, λi = + 1
2 〉. (29)

The φ-meson photoproduction amplitude can then be rep-
resented by a 6× 4 matrix F in helicity space;

F ≡




H2,1 H1,1 H3,−1 −H4,−1

H4,1 H3,1 −H1,−1 H2,−1

H2,0 H1,0 −H3,0 H4,0

H4,0 H3,0 H1,0 −H2,0

H2,−1 H1,−1 H3,1 −H4,1

H4,−1 H3,−1 −H1,1 H2,1




. (30)

In the previous sections we have calculated the matrix
elements of the amplitude in the nucleon spin space. They
are related to the helicity amplitude discussed above by

Hλφ,λf ;λγ ,λi
= (−1)1−λi−λf

∑
mi,mf

(31)

×d
(1/2)
mi,−λi

(0)d(1/2)
mf ,−λf

(θ)〈λφ,mf |T |λγ ,mi〉.

The matrix F allows us to derive the different observables.
For example, the unpolarized differential cross section:

dσ

dΩ

(U)

=
ρ0

4
Tr (FF†) ≡ ρ0I(θ), (32)

where I(θ) is the cross section intensity and ρ0 = |q|/
(64π2s|k|).
If the incoming photon beam is polarized, one can de-

fine the polarized beam asymmetry (analyzing power) Σx
as

Σx =
Tr [FσxγF†]
Tr (FF†)

. (33)

If the cross section is given by σ(B,T ;R,V ) – the superscripts
(B, T ;R, V ) denote the polarizations of (photon beam,
target proton; recoil proton, produced vector-meson) –,
the physical meaning of Σx is:

Σx =
σ(‖,U ;U,U) − σ(⊥,U ;U,U)

σ(‖,U ;U,U) + σ(⊥,U ;U,U) , (34)

The superscript U refers to an unpolarized particle and ‖
(⊥) corresponds to a photon linearly polarized along the
x̂ (ŷ) axis.
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In the same way the polarized target asymmetry T ,
recoil polarization asymmetry P , and the vector-meson
polarization asymmetry V can be defined:

Ty =
Tr (FσyNF†)
TrFF†)

, Py′ =
Tr (FF†σy

′
N ′)

Tr (FF†)
. (35)

Vj =
Tr (FF†ΩVj )
Tr (FF†)

, (36)

The physical meaning of Ty and Py′ is:

Ty =
σ(U,+y;U,U) − σ(U,−y;U,U)

σ(U,+y;U,U) + σ(U,−y;U,U) , (37)

Py′ =
σ(U,U ;y′,U) − σ(U,U ;−y′,U)

σ(U,U ;y′,U) + σ(U,U ;−y′,U) , (38)

where the superscripts ±y and ±y′ denote the direction
of the target and recoil polarization respectively.
The six double polarization observables, Beam–Target

(BT), Beam–Recoil (BR), Target–Recoil (TR), Beam–
Vector-meson (BV), Target–Vector-meson (TV), and
Recoil–Vector-meson (RV), can be defined as:

CBT
ij =

Tr [Fσiγσ
j
NF†]

Tr (FF†)
, (39)

CBR
ij =

Tr [FσiγF†σjN ′ ]
Tr (FF†)

, (40)

CTR
ij =

Tr [FσiNF†σjN ′ ]
Tr (FF†)

, (41)

CBV
ij =

Tr [FσiγF†ΩVj ]
Tr (FF†)

, (42)

CTV
ij =

Tr [FσiNF†ΩVj ]
Tr (FF†)

, (43)

CRV
ij =

Tr [FF†σiN ′ΩVj ]
Tr (FF†)

, (44)

The physical meaning of e.g. CBT
zz is then

CBT
zz =

Tr [Fσzγσ
z
NF†]

Tr (FF†)
=

σ(r,z;U,U) − σ(r,−z;U,U)

σ(r,z;U,U) + σ(r,−z;U,U) , (45)

where the superscript r corresponds to a circularly polar-
ized photon beam with helicity +1, and ±z denotes the
direction of the target proton polarization (see [24] for
explicit definition of double polarization observables).

5 Numerical results

In this section the results of our calculation for the un-
polarized cross section and for single and double polariza-
tion observables are presented. The rescattering process

is the two–step process: (1) production of Λ(1520)K+ sys-
tem and (2) the decay of the Λ(1520) → pK− and forming
a φ–meson. The second (rescattering) process has been
calculated using the dispersion technique while the infor-
mation about Λ(1520)K+ production is extracted from
experimental data.
The differential cross section for Λ(1520) photopro-

duction is not well known in the region of 2 GeV. The
region of higher energies was investigated in [16] where
the differential cross section was averaged over the inci-
dent photon energy from 2.8 to 4.8 GeV. The data show
a strong diffractive peak, the differential cross section was
parametrised as exp(6.1± 2.0)t. The preliminary data for
Λ(1520) photoproduction at 2 GeV from SAPHIR [25] also
show a forward diffractive peak but it is not so sharp and
so even a linear behavior of the differential cross section
could be assumed which falls to zero in the backward scat-
tering region. In the calculation both variants have been
investigated. We also assume that the total cross section
for the Λ(1520) photoproduction is equal to 1µb according
to the preliminary data from [25].
Another source of uncertainties comes from the fact

that the short-range behavior of the meson-meson and
nucleon-meson interactions is unknown. It leads to the in-
troduction of a cut-off Λcut in the dispersion integral which
ensures its convergence. It should be interpreted as a com-
pensation of our ignorance of the amplitude at higher en-
ergies. Let us discuss the vertexKK̄ → φ in detail. If the φ
meson would be a composite KK̄ system, one would have
the wave function of φ meson in the dispersion integral,
and the integration region over s′

12 in (20) would be de-
fined by the area where the wave function is not small (the
method of going from vertex function to wave function for
the dispersion integral of such a kind was discussed in de-
tails in [34] using deuteron as example). But the φ-meson
is, according to the quark model, the ss̄ system, and in the
hadron language the KK̄ is only one possible component
of the φ-meson. Let us assume that the φ → KK̄ vertex
is not small in the region where the vertex φ → ss̄ also
not small. The φ-meson wave function is well-known in
the quark model: using the variable s′

12 it can be approx-
imated as exp(−bs′

12) with b � 2 GeV−2 (for a detailed
discussion of the φ-meson wave function see [43]). Then
in the integral (20) the significant integration region is of
the order of 1/b, that gives Λcut−4m2

K ∼ 1/b � 0.5 GeV2

or Λcut = 1.5 GeV2: that was used in one of our estima-
tions. Actually one may believe that the transition form
factor φ → KK̄ decreases more rapidly than the vertex
φ → ss̄ because the KK̄ system consists of four quarks,
and the integration region in (20) is effectively smaller.
So, the value 1/b does determine a natural hadronic scale.
The use of the arbitrary parameter Λcut in the range 1 –
2 GeV in our evaluations responds to our formulation of
the problem: we evaluate the order of effects from various
peripheral processes.
Figure 6a demonstrates the dependence of the unpo-

larized cross section on the assumption made for the dif-
ferential cross section of Λ(1520) photoproduction. The
results for an exponential and a linear differential cross
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a b

Fig. 6a,b. Cross section dσ
dt

for φ meson photoproduction as
a function of the scattering angle. The solid curve represents
diffractive scattering due to Pomeron exchange. a The dashed
and dot-dashed line gives the contribution from rescattering
in case of exponential and linear differential cross section for
Λ(1520) photoproduction. b The dashed and dot-dashed line
give the contribution from rescattering with Λcut = 1.5 GeV2

and Λcut = 2 GeV2, respectively

Fig. 7. Single spin observables. The solid curve represents
diffractive scattering due to Pomeron exchange. The dashed
and dot-dashed line give the contribution from Pomeron ex-
change+rescattering in case of exponential and linear differen-
tial cross section for Λ(1520) photoproduction

section is given. For simplicity only the principle part of
the dispersion integral is taken into account. Calculations
using different cutting parameters, Λcut = 1.5 GeV2 and
Λcut = 2 GeV2 in case the exponential cross section for
Λ(1520) photoproduction are shown in Fig. 6b.
The contribution of the rescattering process to the

cross section has the same order of magnitude than other
non-dominant contributions like e.g. pion exchange, (see
Fig. 2). Nevertheless it is small compared to the dominant
Pomeron exchange process. Therefore we do not expect a
high sensitivity of unpolarised measurements on the con-
tribution due to rescattering.
The situation is quite different in the measurement of

single and double polarization observables. In Figs. 7 and
8 the results of the calculations for single and double spin

Fig. 8. Double spin observables. The solid curve represents
diffractive scattering due to Pomeron exchange. The dashed
and dot-dashed line give the contribution from Pomeron ex-
change+rescattering in case of exponential and linear differen-
tial cross section for Λ(1520) photoproduction

Fig. 9. Single spin observables. The solid curve represents
diffractive scattering due to Pomeron exchange. The dashed
and dot-dashed line give the contribution from Pomeron ex-
change+rescattering with Λcut equal to 1.5 and 2 GeV2 re-
spectively

observables are shown using different assumptions for the
Λ(1520) photoproduction cross section. Similar calcula-
tions with different cutting parameters, Λcut = 1.5 GeV2

and Λcut = 2 GeV2 for an exponential Λ(1520) photopro-
duction cross section are shown in Figs. 9 and 10.
These results show that rescattering does not affect

the polarization observables in the forward scattering re-
gion in comparison with Pomeron exchange. In [24] it
was found that some double polarization observables in
the forward scattering region, notably, CBT

zx,zz, CBR
zx′,zz′ ,
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Fig. 10. Double spin observables. The solid curve represents
diffractive scattering due to Pomeron exchange. The dashed
and dot-dashed line give the contribution from Pomeron ex-
change+rescattering with Λcut equal to 1.5 and 2 GeV2 re-
spectively

γ φ

p p

PI

Γν Vµ

Fα

q1 (p1)

q2q3 (p1+q)(p1+k)

Fig. 11. Quark picture for the Pomeron exchange model of φ
photoproduction (from [24]). The four-momenta of the quarks
q1,2,3 are given in parentheses

CTV
zx′,zz′ , and CRV

xx′,zz′ , depend very sensitively on the hid-
den strangeness content of the proton. Our calculations
show that rescattering gives a visible effect on single and
double polarization observables but only in the scatter-
ing region of θ ≥ 90◦. This is the main difference be-
tween the contribution from rescattering and from the
ss̄-knockout mechanism in φ photoproduction. The large
contribution from rescattering could be observed by mea-
suring single polarization observables. They have the same
order of magnitude as the ss̄-knockout but a different an-
gular dependence (see Fig. 9 from [24]). To distinguish be-
tween rescattering and ss̄-knockout mechanism more in-
formation about Λ(1520) photoproduction cross section is
needed to decrease the uncertainties of rescattering calcu-
lation.

6 Conclusion

Photoproduction of φmesons gives us the possibility to in-
vestigate the role of hidden strangeness in nucleons. The

Fig. 12a,b. Series of diagrams for the resonance amplitude

interpretation of the experimental data and any conclu-
sion about the s̄s component in the proton wave function
should however take into account possible conventional
explanations. We investigated the production of hidden
strangeness in the peripheral processes, which can be re-
liably evaluated using hadron language. Our investigation
points out problems which can arise if one tries to de-
termine the role of the hidden ss̄ component in photon-
proton reactions. Ignoring rescattering effects may lead to
a wrong interpretation of the data.
We calculate the contribution from rescattering of

K+K− pairs produced by photoproduction of Λ(1520)K+

to photoproduction of φ mesons. We find that rescattering
makes an important contribution to the photoproduction
of φ mesons in the backward region (θ ≥ 90◦) visible in
the single and double polarization observables. Forthcom-
ing high precision data may decide on the validity of the
different models.
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A Decay matrix elements
and the coupling constant

A.1 φ → KK

The matrix element for the φ decay into two kaons is pro-
portional to the relative momentum and can be written
as

Qφ→KK = εφµ(p1 − p2)µgφKK (46)

where gφKK is a coupling constant and pi is the momen-
tum of the kaon (p2

i = m2
K). The completeness condition

for the polarization vector εφ is

εφαε
φ∗
β = −g⊥

αβ(P ) ,

with

g⊥
αβ(P ) = gαβ − PαPβ

P 2 , P = p1 + p2 .

Here gµν = diag(1,−1,−1,−1). Now we consider the ex-
pression for a P-wave resonance in the framework of the
dispersion technique which allows us to relate the coupling
constant gφKK to the resonance width Γ . The amplitude
for a P-wave resonance, aR, can be presented as a series
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of diagrams shown in Fig. 12. The first term in this series
Fig. 12a is equal to

(p1 − p2)µ gφKK
−g⊥

µν(P )
M2 − s

gφKK (p′
1 − p′

2)ν , (47)

where s = (p1 + p2)2 and M is the mass of the bare reso-
nance. The next term shown in Fig. 12b is equal to

(p1 − p2)µ gφKK
−g⊥

µµ′(P )
M2 − s

×Bµ′ν′(s)
−g⊥

ν′ν(P )
M2 − s

(p′
1 − p′

2)µ gφKK , (48)

where Bµ′ν′(s) is the amplitude of the loop diagram. Let
us introduce the total momentum of the loop, P ′ = k1+k2,
where P ′2 = s′. To write down the dispersion integral for
this diagram one should extract the invariant amplitude
which depends on s′ only. The imaginary part of the loop
diagram is

1
2

∫
dΦ(KK) (k1 − k2)µ′ gφKK (k1 − k2)ν′ gφKK (49)

where the phase space element dΦ(KK) is

dΦ(KK) =
d4k1 d4k2

(2π)6
(2π)4 δ4(P ′ − k1 − k2)

× δ(m2
K − k2

1) δ(m
2
K − k2

2) . (50)

After integration over phase space, dΦ(KK), and the ex-
traction of the tensor factor we find

Bµ′ν′(s) = −g⊥
µ′ν′(P ) b(s) . (51)

The dispersion integral for b(s) is

b(s) =
∫

ds′

π

1
3α(s

′)ρ(s′) g2
φKK

s′ − s
, (52)

with

ρ(s′) ≡ 1
2

∫
dΦ(KK) =

1
16π

√
s′

√
s′ − 4m2

K

α(s′) = s′ − 4m2
K . (53)

Thus, using the relation, g⊥
µµ′′(P )g⊥

µ′′µ′(P ) = g⊥
µµ′(P ) we

find from (48) that diagram of Fig. 2b is equal to

−g⊥
µν(P ) (p1 − p2)µ gφKK

1
M2 − s

×b(s)
1

M2 − s
(p1 − p2)ν gφKK . (54)

Collecting terms with higher number of rescattering pro-
cesses one finds that the amplitude of the φ which decays
into two kaons is given by

aR = (p1 − p2)µ gφKK
−g⊥

µν(P )
M2 − s − b(s)

(p1 − p2)ν gφKK .

(55)

The standard Breit-Wigner formula can be obtained from
(55) if one neglects the energy dependence in b(s):

aR = (p1 − p2)µ gφKK
−g⊥

µν(P )
M2

0 − s − iΓ0M0
(p1 − p2)ν gφKK

(56)
with

M2
0 = M2 − Re b(M2

0 ), (57)

Γ0M0 =
1
3
α(M2

0 )ρ(M
2
0 )g

2
φKK . (58)

M0 and Γ0 are the physical mass and width of the reso-
nance. Equation (58) defines g1:

g2
φKK =

3 Γ0 M0

α(M2
0 )ρ(M

2
0 )

. (59)

A more sophisticated Breit-Wigner formula which takes
into account two-particle thresholds can be obtained from
(55), by neglecting the energy dependence in Re b(s) only
taking into account the threshold singularity:

Γ (s) = Γ0

(
s − 4m2

K

M2
0 − 4m2

K

) 3
2

(60)

A.2 Λ(1520) → pK−

Let us consider the matrix element for the decay Λ(1520)
into p and K−. The Λ(1520) is defined by the field Ψ(P )
which satisfies the conditions

Pµ Ψµ(P ) = 0 , γµ Ψµ(P ) = 0 (61)

where P is the 4-momentum of the Λ(1520). The com-
pleteness condition for 3/2-spin field can be written as:∑

a

Ψµa(P )Ψ̄νa(P )

=
(
P̂ +mΛ

) (
−g⊥

µν(P ) +
1
3
γ⊥
µ (P )γ

⊥
ν (P )

)
,(62)

with

g⊥
µν(P ) = gµν − PµPν

P 2 , γ⊥
µ (P ) = γµ − Pµ

P̂

P 2 . (63)

The decay matrix element for the Λ(1520) decay into
nucleon and kaon has the form [22]:

QΛ→NK = Ψµ γ5kNµgΛNK (64)

where gΛNK is a coupling constant and kN is momentum
of the nucleon.
Let us define the coupling constant for Λ → NK,

which determines the process of Fig. 5a. The propagator
of the stable Λ, with mass mΛ, is equal to

(P̂ +mΛ)(−g⊥
αβ +

1
3γ

⊥
α γ

⊥
β )

m2
Λ − P 2 . (65)
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The propagator in case of a decay into nucleon and kaon
can be redefined by the replacement:

(m2
Λ − P 2)−1 → (m2

Λ − P 2 − BNK(P 2))−1 , (66)

where BNK(P 2) is the kaon–nucleon loop diagram. The
real part of this diagram re-determines mΛ, and the imag-
inary part of BNK(P 2) gives the partial width Γ for the
decay Λ → KN :

(P̂ +mΛ)(−g⊥
αβ +

1
3γ

⊥
α γ

⊥
β )

m2
Λ − P 2 − imΛΓ

. (67)

The next step is to calculate BNK(P 2). The following ex-
pression stands for the Λ propagator with BNK(P 2) con-
sidered as a perturbative correction:

(P̂ +mΛ)(−g⊥
α′β +

1
3γ

⊥
α′γ⊥

β )
m2
Λ − P 2

×
∫

d4kN
(2π)4i

kNβγ5
(k̂N +mN )
m2
N − k2

N

(−kNαγ5)
1

m2
K − m2

K

× (P̂ +mΛ)(−g⊥
αβ′ + 1

3γ
⊥
α γ

⊥
β′)

m2
Λ − P 2 . (68)

Let us stress that in (68) one has a different sign for left
and right operator to make the B-function positive.
Let us decompose the vector kN over vectors P and

k⊥ (k⊥ is orthogonal to p):

kN =
P 2 +m2

N − m2
K

2P 2 P + k⊥ . (69)

To calculate the imaginary part of (68) the following re-
placement should be made:

1
(m2

K − k2
K)(m

2
N − k2

N )
→

1
2
(2πi)2δ(m2

N − k2
N )θ(kN0)δ(m2

K − k2
K)θ(kK0) . (70)

When integrating over k⊥, the terms proportional to k⊥
and k⊥3 vanish, while the quadratic terms should be re-
placed as follows:

k⊥
α k

⊥
β → −1

3

[
m2
K − (P 2 − m2

N +m2
K)

4P 2

]
g⊥
αβ

= −1
3
k2

⊥g⊥
αβ . (71)

Using the equality(
g⊥
αβ − 1

3
γ⊥
α γ

⊥
β

) (
g⊥
βε − 1

3
γ⊥
β γ

⊥
ε

)
=

(
g⊥
αε − 1

3
γ⊥
α γ

⊥
ε

)
.

(72)
one obtains:(

P̂ +mΛ

) (
−g⊥

α′β′ + 1
3γ

⊥
α′γ⊥

β′

)
m2
Λ − P 2 i

g2
ΛNK

24π

×
(
(P 2 +m2

N − m2
K)

2

4P 2 − m2
K

)3/2

× (mΛ − mN )2 − m2
K

mΛ
. (73)

So

g2
ΛNK =

24πΓm2
Λ

|k|3 ((mΛ − mN )2 − m2
K))

(74)

where |k| is the kaon momentum in the c.m. frame.
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Ç. Şavkli, F. Tabakin, Phys. Rev. C 53, 593 (1996)
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